Package: netrankr 1.2.3

netrankr: Analyzing Partial Rankings in Networks

Implements methods for centrality related analyses of networks. While the package includes the possibility to build more than 20 indices, its main focus lies on index-free assessment of centrality via partial rankings obtained by neighborhood-inclusion or positional dominance. These partial rankings can be analyzed with different methods, including probabilistic methods like computing expected node ranks and relative rank probabilities (how likely is it that a node is more central than another?). The methodology is described in depth in the vignettes and in Schoch (2018) <doi:10.1016/j.socnet.2017.12.003>.

Authors:David Schoch [aut, cre], Julian Müller [ctb]

netrankr_1.2.3.tar.gz
netrankr_1.2.3.zip(r-4.5)netrankr_1.2.3.zip(r-4.4)netrankr_1.2.3.zip(r-4.3)
netrankr_1.2.3.tgz(r-4.4-x86_64)netrankr_1.2.3.tgz(r-4.4-arm64)netrankr_1.2.3.tgz(r-4.3-x86_64)netrankr_1.2.3.tgz(r-4.3-arm64)
netrankr_1.2.3.tar.gz(r-4.5-noble)netrankr_1.2.3.tar.gz(r-4.4-noble)
netrankr_1.2.3.tgz(r-4.4-emscripten)netrankr_1.2.3.tgz(r-4.3-emscripten)
netrankr.pdf |netrankr.html
netrankr/json (API)
NEWS

# Install 'netrankr' in R:
install.packages('netrankr', repos = c('https://schochastics.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/schochastics/netrankr/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

On CRAN:

network-analysisnetwork-centrality

9.24 score 49 stars 2 packages 87 scripts 1.3k downloads 31 exports 13 dependencies

Last updated 2 months agofrom:e8e1307f6b. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-win-x86_64OKNov 22 2024
R-4.5-linux-x86_64OKNov 22 2024
R-4.4-win-x86_64OKNov 22 2024
R-4.4-mac-x86_64OKNov 22 2024
R-4.4-mac-aarch64OKNov 22 2024
R-4.3-win-x86_64OKNov 22 2024
R-4.3-mac-x86_64OKNov 22 2024
R-4.3-mac-aarch64OKNov 22 2024

Exports:aggregate_positionsapprox_rank_expectedapprox_rank_relativecomparable_pairscompare_ranksdist_2powdist_dpowdist_invdist_powddominance_graphexact_rank_probget_rankingshyperbolic_indexincomparable_pairsindex_builderindirect_relationsis_preservedmajorization_gapmcmc_rank_probneighborhood_inclusionpositional_dominancerank_intervalsspectral_gapthreshold_graphtransitive_reductionwalks_attenuatedwalks_expwalks_exp_evenwalks_exp_oddwalks_limit_propwalks_uptok

Dependencies:clicpp11glueigraphlatticelifecyclemagrittrMatrixpkgconfigRcppRcppArmadillorlangvctrs

Neighborhood-inclusion in networks

Rendered fromneighborhood_inclusion.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2021-08-24
Started: 2017-04-25

Uniquely ranked graphs

Rendered fromthreshold_graph.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2021-08-24
Started: 2017-04-25

Positional dominance in networks

Rendered frompositional_dominance.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2021-07-15
Started: 2017-05-06

Indirect relations in networks

Rendered fromindirect_relations.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2023-12-15
Started: 2017-07-13

Centrality indices

Rendered fromcentrality_indices.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2021-07-12
Started: 2017-07-17

Partial Centrality

Rendered frompartial_centrality.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2022-09-24
Started: 2017-07-17

Probabilistic Centrality

Rendered fromprobabilistic_cent.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2021-08-24
Started: 2017-07-20

Use Case: Florentine Families

Rendered fromuse_case.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2023-08-20
Started: 2017-08-04

Benchmark Results

Rendered frombenchmarks.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2022-09-20
Started: 2017-09-02

Readme and manuals

Help Manual

Help pageTopics
Quantification of (indirect) relationsaggregate_positions
Approximation of expected ranksapprox_rank_expected
Approximation of relative rank probabilitiesapprox_rank_relative
Extract probabilities from netrankr_full objectas.matrix.netrankr_full
Comparable pairs in a partial ordercomparable_pairs
Count occurrences of pairs in rankingscompare_ranks
dbces11 graphdbces11
Partial ranking as directed graphdominance_graph
Probabilistic centrality rankingsexact_rank_prob
Florentine family marriage networkflorentine_m
Rankings that extend a partial rankingget_rankings
Hyperbolic (centrality) indexhyperbolic_index
Incomparable pairs in a partial orderincomparable_pairs
Centrality Index Builderindex_builder
Indirect relations in a networkindirect_relations
Check preservationis_preserved
Majorization gapmajorization_gap
Estimate rank probabilities with Markov Chainsmcmc_rank_prob
Neighborhood-inclusion preorderneighborhood_inclusion
Plot rank intervalsplot_rank_intervals
Plot netrankr_full objectplot.netrankr_full
plot netrankr_interval objectsplot.netrankr_interval
Plot netrankr_mcmc objectplot.netrankr_mcmc
Generalized Dominance Relationspositional_dominance
Print netrankr_full object to terminalprint.netrankr_full
Print netrankr_interval object to terminalprint.netrankr_interval
Print netrankr_mcmc object to terminalprint.netrankr_mcmc
Rank interval of nodesrank_intervals
Spectral gap of a graphspectral_gap
Summary of a netrankr_full objectsummary.netrankr_full
Random threshold graphsthreshold_graph
Transform indirect relationsdist_2pow dist_dpow dist_inv dist_powd transform_relations walks_attenuated walks_exp walks_exp_even walks_exp_odd walks_limit_prop walks_uptok
Transitive Reductiontransitive_reduction